Tuning Your Carbs with an Exhaust Gas Analyzer
... from Fred Sisson's "Bedside Reader"..
with an EFI Addendum by Lorne Goldman

PICK A NUMBER BETWEEN ONE AND THREE HUNDRED...

Did you know that there are 354 needles listed for  (the most common) .090 jet SU! To further compound the problem of choice- your particular car will probably run lousy on 40%  of them, OK on 30%,  feel great on 20%, run really great on 5%  and really kick butt on 5%.  No wonder so few people
change needles. Where do you start?

Other people's recommendations, even "factory" recommendations are probably off somewhere in your driving range... maybe WAY off! Just remember "different is not the same". Different car (and EVERY one is different) - different requirements- different needles.... No one can "tell" you what is the really proper needle for your own car. No matter how experienced they are, it will only be an educated guess at best. We all know that  the big-bucks racers have their engines checked on a dynamometer, simulating race conditions, with lots of very expensive instrumentation. This is a bit beyond my modest means and... expertise. Still- there is a way to sort through the haystack and find the right SU needle for your own particular car. I guarantee that it will improve your engine's performance, it is not too costly and it is very rewarding.

ARE YOUR NEEDLES CORRECT FOR YOUR ENGINE?

This is not about "thinking"- this is about "knowing". How do you know?   As far as I am concerned, the ONLY way to tune SU carburetors is with an on-board exhaust analyzer ($100 bucks).  This way, you can check your car while you are driving it, on your roads (or track).  Anything else is groping in the dark.  Many companies make exhaust analyzers today. They run somewhere around $100.00. They use an O2 sensor that fits into your exhaust system and are described  in the book. Racer Wholesale now offers an analyzer that will read two sensors (and there is a decent one in the J.C. Penny catalogue for $120.  GoMoG Webmaster). This is the really hot setup for twin carbs as you can exactly tune each carb (not just the resultant combined mixture of the two.)

The analyzer itself is a 'bitty thing. Mine is about 1 ½"x 2". It has a series of LEDs that instantly read the fuel/air ratio- as you drive! Real world stuff here.....   I doubt that any standard carburetor will give the absolute perfect ratio at all times. However, you can get darn close and the reward for your time and  effort might just be a very dramatic improvement in performance. At the very least, you will have peace-of-mind, knowing that your engine is not being hurt from the effects of a drastically rich or lean mixture.

Many of the hot sports racers have the analyzer permanently mounted in their car. They "tune for the course". Exhaust analyzers are available as in-dash instruments also. I personally use the analyzer with the temporary mount  as the in-dash units are a bit out of place in a vintage car. There is also a choice of O2 sensors. I have been using the cheap kind which runs around $30.00. The 70 buck O2 sensor is better as it is electrically heated and comes to the initial readings quicker, but the cheapy  works fine once it gets hot. I tape the gage to the windscreen with "racer tape" so that I can see it at all times while driving/testing. It reacts instantly so you can even use it to set the power valve for a Holley carb. Pretty neat. When I am done- remove the gauge and O2 sensor. There is a blank plug that screws into the sensor hole.

AN ADDENDUM FOR EFI (FLAPPER SYSTEMS)
by Lorne Goldman

Fred's article points to one of the inexpensive devices that the home mechanic can purchase to fine tune there engine as well or better than most roadside professional garage. An exhaust gas analyzer takes the guess work out of carburetor tuning.

It is also the only method of precisely tuning the Plus 8  Rover "flapper" EFI system that was optional between 1984 and 1986 and standard between 1986 and 1990. The later "Hotwire" system has the ability to be "hooked-up" to a diagnostic unit but the flapper does not.  Tuning is done by attached a exhaust gas analyzer to the tail pipe and turning the idle air bypass screw on the airflow meter. until the analyzer LED shows the correct CO2 level. (normally 1.5 to 2.5% for a Plus 8)

CLUTCH SLAVE CYLINDER (a special note)
offered by Andrew Green
1993 Plus 8, R11002
Exeter, Devon, UK

BEWARE! Unless the replacement clutch slave was supplied by a Morgan source, it will require some filing at the rear to fit. This part should be carefully compared with the one it replaces before installation as the positioning of the part and the care necessary to place and fit it make it a wise idea to be certain that no modification is necessary before you begin the careful process. You will save much time and frustration with a little caution.

The Morgan catalogue indicates the same slave cylinder was fitted to LT77 and R380 +8s and +4s from July 1984. My original Girling item has the following on the underside :- 64673467  A BS (or might be 5 ?) GIRLING  D10.

Good Luck!

Clutch Pedal Adjustment (LT77 and R380 Plus 8s (1977 to 1996) and Plus 4s (1987-1996) 

Replacing the Clutch Slave (LT77 and R380 Plus 8s (1977 to 1996) and Plus 4s (1987-1996)

A local garage will not have an advantage here. The area is Morgan-configuration only. Part of the neverending odd modifications needed to keep fitting later motors to an engine bay designed in the Thirties for a 36bhp tractor engine. ;) That task constantly exhibits a GoMoG Law I call the Deadly Domino Effect. In this case, the bellhousing doesn't quite fit far enough into the car because of the:
1. the width of the area for bellhousing,
2, the crossmember at the bulkhead underneath
3. and the bellhousing casting placement for the regular LR clutch slave.

Two Morgan designers, Maurice Owen and the Bill Beck, (1967-2002) addressed the issue differently. However, both designs have er... sad issues. The mechanical priority, begun when Peter took over at the MMC, has been for lowering costs.


With the Maurice Owen system, he cut off the bottom area normally used for the clutch slave. (Though clutch slaves should always be at the bottom of the bellhousing in a placement BELOW the clutch master cylinder.) He then welded in pieces to close the the wound at the bottom and also the standard SD1 bellhousing opening at the top. Then he fit a tiny non-Morgan, non-Rover clutch slave at a bad angle at the top. Between the short clutch slave, the placement ABOVE the clutch master cylinder and the bad angle, these slaves rarely last more than 12,000-15000 miles as they wear away at the slave cylinder.

Bill Beck's case, he had the chassis crossmember altered to allow a bit more bellhousing egress under the bulkhead, giving the Plus 8 engine some badly needed room at the front and allowing the engine to be a bit and level, meaning that it cleared the bonnet hinge and cutting the hinge or smashing down the SU air filter box was no longer necessary!  However, the outer side of the regular slave's protection had to be cut off to allow sufficent spacing and debris easily enters these bellhousings. On the other hand, production was MUCH faster and the factory could save as the clutch slaves were free with the engine/transmission purchase.

You and I could have come up with a better design. But these these designers were given priorities and instructions and attitudes from on high. You would be wrong to think that they were incompetent. The sad pity is that, as these cost priorities are indulged and such designs are currently multiplying, the cars are becoming less and less reliable. (Do not confuse aging and poor maintenance with bad design They are separate issues.)

We will be deal here with replacing the slave in the Maurice Owen system.
Look at the area atop your engine. I have found some piccies (above If that is what you have on your car, go pump your clutch vigorously a bit and then go check if you can see/feel any brake fluid. (If you get clutch fluid on your hands, wash it off quickly. I use spray brake cleaner.)


To change the clutch slave shown above.

1. with a 7/16 spanner, remove the line to the clutch master. I find this makes the rest of the job easier as you can tighten the line at the slave without twisting the line.

2. Remove the fluid line from the clutch slave.

3. Now the big bolts. These often are unwilling as they are steel and the bellhousing is aluminium. That creates a galvanic reaction (aka metal rot) that seizes these bolts. Use the correct socket and if the two bolts seem reluctant, take some time and use a penetrating oil, even many times over a few days.

4. When they loosen, do not remove them right away.

WATCHPOINT: the only annoying danger in this task is losing the cylinder's actuating rod...which can be a pain in the butt. What I do is grab it with a small needlenose vice grips as you are removing it then lock it the vice grips and secure the grips at the side.

 5. Once the rod is secure, remove the big bolts by hand, and slowly draw the slave towards the engine and, if necessary, a bit upward until it is free from its actuating 
rod.

6. Check the new cylinder. You do not need a rod (assuming it came with one). You should use the old rod as it has likely been adjusted to the right length for your car. Additionally, this little cylinder, even if it is the correct one, must have had its rear ground/filed to fit a Morgan.

7. Now you must reverse the procedure with the new slave. Carefully position the slave on the engine side and angle/slide it onto the rod, only removing the vicegrips when the rod slides in and is captured into the cylinder and the rubber!

8. Now (after covering the bolts with a little silicone to prevent the same galvanic reaction mentioned above), thread in the big bolts. Then tighten them firmly with your socket and ratchet. You can now breath.

9. Now you must reconnect the line to the master clutch cylinder. Use the bottom fitting on the slave for this as you need access to the top one. (there is no difference between the two but easy access to the top is necessary for bleeding the system which is next up). 

10. Remove the top fitting to allow you access to tighten the line and tighten the line.

11. Thread on the fitting into the master clutch cylinder and tighten after you are assured it is not cross-threaded.

12. Now you must refill and bleed the system. We all have different systems for that. I use any glass jar that happens to be around... with a tube connected between the bleeding nipple and with the other end submerged in brake/clutch fluid. Make sure the reservoir never empties or you will pumping air rather than fluid into the system.  On which brake fluid to use, CLICK HERE.

BACK